Свойства алюминия: удельный вес и теплопроводность, производство, применение, сплавы и температура плавления

Алюминий — химический элемент III группы периодической системы Менделеева (атомный номер 13, атомная масса 26,98154). В большинстве соединений алюминий трехвалентен, но при высоких температурах он способен проявлять и степень окисления +1. Из соединений этого металла самое важное — оксид Al2O3. svoystva_alyuminiya_udelnyy_ves_i_teploprovodnost__proizvodstvo__primenenie__splavy_i_temperatura_plavleniya_1-2206750

Содержание
  1. Алюминий
  2. Теплопроводность сплавов алюминия
  3. Характеристика теплопроводности материалов
  4. Физические свойства алюминия
  5. Технические характеристики некоторых сплавов на основе алюминия
  6. Алюминий и его сплавы: особенности материала и проведения сварки
  7. Особенности и применение алюминия
  8. Особенности плавления и сварки алюминия
  9. Особенности выбора материалов и сварочной проволоки
  10. Способы сварки алюминия
  11. Подготовка металла к сварке
  12. Свойства алюминия
  13. Плотность материала
  14. Теплопроводность
  15. Теплоемкость
  16. Удельное сопротивление
  17. Химические свойства
  18. Физические свойства алюминия
  19. Плотность алюминия
  20. Температура плавления и кипения
  21. Теплопроводность алюминия
  22. Электропроводность алюминия
  23. Отражательная способность
  24. Алюминиевые сплавы — марки, свойства и применение
  25. Производство алюминия
  26. Алюминиевые сплавы
  27. Марки алюминиевых сплавов
  28. Виды и свойства алюминиевых сплавов
  29. Алюминиево-магниевые сплавы
  30. Алюминиево-марганцевые сплавы
  31. Сплавы алюминий-медь-кремний
  32. Алюминиево-медные сплавы
  33. Алюминий-кремниевые сплавы
  34. Сплавы алюминий-цинк-магний
  35. Авиаль
  36. Физические свойства
  37. Химический состав алюминиевых сплавов
  38. Столовые приборы
  39. Стекловарение
  40. Пищевая промышленность
  41. Военная промышленность
  42. Ракетная техника
  43. Алюмоэнергетика

Алюминий

Алюминий — серебристый-белый металл, легкий (плотность 2,7 г/см3) , пластичный, хороший проводник электричества и тепла, температура плавления 660 °C. Он легко вытягивается в проволоку и прокатывается в тонкие листы.

Алюминий химически активен (на воздухе покрывается защитной оксидной пленкой — оксидом алюминия.) надежно предохраняет металл от дальнейшего окисления.

Но если порошок алюминия или алюминиевую фольгу сильно нагреть, то металл сгорает ослепительным пламенем, превращаясь в оксид алюминия.

Алюминий растворяется даже в разбавленных соляной и серной кислотах, особенно при нагревании. А вот в сильно разбавленной и концентрированной холодной азотной кислоте алюминий не растворяется.

При действии на алюминий водных растворов щелочей слой оксида растворяется, причем образуются алюминаты — соли, содержащие алюминий в составе аниона:

Al2O3 + 2NaOH + 3H2O = 2Na[Al(OH)4] .

Алюминий, лишенный защитной пленки, взаимодействуют с водой, вытесняя из нее водород:

2Al + 6H2O = 2Al(OH)3 + 3H2

Образующийся гидроксид алюминия реагирует с избытком щелочи, образуя гидроксоалюминат:

Al(OH)3 + NaOH = Na[Al(OH)4].

Суммарное уравнение растворения алюминия в водном растворе щелочи имеет следующий вид:

2Al + 2NaOH +6H2O = 2Na[Al(OH)4] + 3H2.

Алюминий активно взаимодействует и с галогенами. Гидроксид алюминия Al(OH)3 — белое, полупрозрачное, студенистое вещество.

В земной коре содержится 8,8% алюминия. Это третий по распространенности в природе элемент после кислорода и кремния и первый — среди металлов. Он входит в состав глин, полевых шпатов, слюд. Известно несколько сотен минералов Al (алюмосиликаты, бокситы, алуниты и другие). Важнейший минерал алюминия — боксит содержит 28-60% глинозема — оксида алюминия Al2O3.

В чистом виде алюминий впервые был получен датским физиком Х. Эрстедом в 1825 году, хотя и является самым распространенным металлом в природе.

Производство алюминия осуществляется электролизом глинозема Al2O3 в расплаве криолита NaAlF4 при температуре 950 °C.

Алюминий применяется в авиации, строительстве, преимущественно в виде сплавов алюминия с другими металлами, электротехнике (заменитель меди при изготовлении кабелей и т.д.), пищевой промышленности (фольга), металлургии (легирующая добавка), алюмотермии и т.д.

Плотность алюминия, удельный вес и другие характеристики.

  • Плотность — 2,7*103кг/м3;
  • Удельный вес — 2,7 г/cм3;
  • Удельная теплоемкость при 20°C — 0,21 кал/град;
  • Температура плавления — 658,7°C ;
  • Удельная теплоемкость плавления — 76,8 кал/град;
  • Температура кипения — 2000°C ;
  • Относительное изменение объема при плавлении (ΔV/V) — 6,6%;
  • Коэффициент линейного расширения (при температуре около 20°C) : — 22,9 *106(1/град);
  • Коэффициент теплопроводности алюминия — 180 ккал/м*час*град;

Модули упругости алюминия и коэффициент Пуассона

Наименование материала Модуль Юнга, кГ/мм2 Модуль сдвига, кГ/мм2 Коэффициент Пуассона
Алюминиевая бронза, литье 10500 4200
Алюминиевая проволока тянутая 7000
Алюминий катаный 6900 2600-2700 0,32-0,36

Отражение света алюминием

Числа, приведенные в таблице, показывают, какая доля света в %, падающего перпендикулярно к поверхности, отражается от нее.

Наименование волн Длина волны Отражение света, %
Ультрафиолетовые 18802000251030503570 2531536470
Видимые 500060007000
Инфакрасные 80001000050000100000 -749497

ОКСИД АЛЮМИНИЯ Al2O3

Оксид алюминия Al2O3, называемый также глиноземом, встречается в природе в кристаллическом виде, образуя минерал корунд. Корунд обладает очень высокой твердостью. Его прозрачные кристаллы, окрашенные в красный или синий цвет, представляют собой драгоценные камни — рубин и сапфир.

В настоящее время рубины получают искусственно, сплавляя с глиноземом в электрической печи. Они используются не столько для украшений, сколько для технических целей, например, для изготовления деталей точных приборов, камней в часах и т.п.

Кристаллы рубинов, содержащих малую примесь Cr2O3, применяют а качестве квантовых генераторов — лазеров, создающих направленный пучек монохроматического излучения.

Корунд и его мелкозернистая разновидность, содержащая большое количество примесей — наждак, применяются как абразивные материалы.

ПРОИЗВОДСТВО АЛЮМИНИЯ

Основным сырьем для производства алюминия служат бокситы, содержащие 32-60% глинозема Al2O3 . К важнейшим алюминиевым рудам относятся также алунит и нефелин.

Россия располагает значительными запасами алюминиевых руд. Кроме бокситов, большие месторождения которых находятся на Урале и в Башкирии, богатым источником алюминия является нефелин, добываемый на Кольском полуострове.

Много алюминия находится и в месторождениях Сибири.

Алюминий получают из оксида алюминия Al2O3 электролитическим методом. Используемый для этого оксид алюминия должен быть достаточно чистым, поскольку из выплавленного алюминия примеси удаляются с большим трудом. Очищенный Al2O3 получают переработкой природного боксита.

Основное исходное вещество для производства алюминия — оксид алюминия. Он не проводит электрический ток и имеет очень высокую температуру плавления (около 2050 °C), поэтому требуется слишком много энергии.

Необходимо снизить температуру плавления оксида алюминия хотя бы до 1000 oC. Такой способ параллельно нашли француз П. Эру и американец Ч. Холл.

Они обнаружили, что глинозем хорошо растворяется в раплавленном криолите — минерале состава AlF3 .3NaF. Этот расплав и подвергают элктролизу при температуре всего около 950 °C на алюминиевых производствах.

Запасы криолита в природе незначительны, поэтому был создан синтетический криолит, что существенно удешевило производство алюминия.

Гидролизу подвергают расплавленную смесь криолита Na3 [AlF6 ] и оксида алюминия.

Смесь, содержащая около 10 весовых процентов Al2O3 , плавится при 960 °C и обладает электропроводностью, плотностью и вязкостью, наиболее благоприятствующими проведению процесса.

Для дополнительного улучшения этих характеристик в состав смеси вводят добавки AlF3, CaF2 и MgF2. Благодаря этому проведение электролиза оказывается возможным при 950 °C.

Эликтролизер для выплавки алюминия представляет собой железный кожух, выложенный изнутри огнеупорным кирпичем. Его дно (под), собранное из блоков спресованного угля, служит катодом.

Аноды (один или несколько) располагаются сверху: это — алюминиевые каркасы, заполненные угольными брикетами.

На современных заводах электролизеры устанавливаются сериями; каждая серия состоит из 150 и большего числа электролизеров.

При электролизе на катоде выделяется алюминий, а на аноде — кислород. Алюминий , обладающий большей плотностью , чем исходный расплав, собирается на дне эликтролизера, откуда его периодически выпускают. По мере выделения металла, в расплав добавляют новые порции оксида алюминия. Выделяющийся при электролизе кислород взаимодействует с углеродом анода, который выгорает, образуя CO и CO2.

Первый алюминиевый завод в России был построен в 1932 году в Волхове.

СПЛАВЫ АЛЮМИНИЯ

Сплавы, повышающие прочность и другие свойства алюминия, получают введением в него легирующих добавок, таких, как медь, кремний, магний, цинк, марганец.

Дуралюмин (дюраль, дюралюминий, от названия немецкого города, где было начато промышленное производство сплава). Сплав алюминия (основа) с медью (Cu: 2,2-5,2%), магнием (Mg: 0,2-2,7%) марганцем(Mn: 0,2-1%). Подвергается закалке и старению, часто плакируется алюминием. Является конструкционным материалом дла авиационного и транспортного машиностроения.

Силумин — легкие литейные сплавы алюминия (основа) с кремнием (Si: 4-13%), иногда до 23% и некоторыми другими элементами: Cu, Mn, Mg, Zn, Ti, Be). Изготавливают детали сложной конфигурации, главным образом в авто- и авиастроении.

Магналии — сплавы алюминия (основа) с магнием (Mg: 1-13%) и другими элементами, обладающие высокой коррозийной стойкостью, хорошей свариаемостью, высокой пластичностью. Изготавливают фасонные отливки (литейные магналии), листы, проволоку, заклепки и т.д. (деформируемые магналии).

Основные достоинства всех сплавов алюминия состоит в их малой плотностью (2,5-2,8 г/см3), высокая прочность (в расчете на единицу веса), удовлетворительная стойкость против атмосферной коррозии, сравнительная дешевизна и простота получения и обработка.

Алюминиевые сплавы применяются в ракетной технике, в авиа-, авто-, судо- и приборостроении, в производстве посуды, спорттоваров, мебели, рекламе и других отраслях промышленности.

По широте применения сплавы алюминия занимают второе место после стали и чугуна.

Алюминий — одна из наиболее распространенных добавок в сплавах на основе меди, магния, титана, никеля, цинка, железа.

Алюминий применяется и для алитирования (алюминирования) — насыщения поверхности стальных или чугунных изделий алюминием с целью защиты основного материала от окисления при сильном нагревании, т.е. повышения жароупорности (до 1100 °C) и сопротивления атмосферной коррозии.

Источник:

Теплопроводность сплавов алюминия

svoystva_alyuminiya_udelnyy_ves_i_teploprovodnost__proizvodstvo__primenenie__splavy_i_temperatura_plavleniya_1-1-6542153

Теплопроводность алюминия — это технический параметр, характеризующий свойства металла и сплавы на его основе. Значение этого показателя учитывается при формировании составов для изготовления литейных, деформируемых изделий, промышленного производства деталей и установок.

Характеристики теплопроводности учитываются при использовании его в производстве.

Характеристика теплопроводности материалов

Понятие теплопроводности материалов характеризуется способностью переносить тепловую энергию в пределах определенного объекта от нагретых частей к холодным.

Процесс осуществляется атомами, молекулами, электронами и происходит в любых телах с неравномерным распределением температуры.

С позиций кинетической физики этот процесс происходит в результате взаимодействия частиц молекул более нагретых участков в пределах образца с другими элементами, отличающимися низшей температурой.

Механизм и скорость переноса теплоты зависит от агрегатного состояния вещества.

Категория теплопроводности предусматривает определение скорости нагревания образца материала и перемещение температурной волны в определенном направлении.

Показатель зависит от физических параметров:

  • плотности;
  • температуры фазового перехода в жидкое состояние
  • скорости распространения звука (для диэлектриков).
Также может быть интересно:  Дюбель-гвозди для бетона: разновидности, основные характеристики, существующие размеры и способы установки

Физические свойства алюминия

Химический элемент алюминий имеет кубическую кристаллическую структуру. Его удельный вес при 20 °C составляет 2,7 г/см³, температура плавления — +657…+660,2 °C, скрытая теплота плавления — 94,6 °C.

Алюминий высокой чистоты кипит при +1800…+2060 °C. При нагревании увеличивается показатель удельной теплоемкости металла, проводимость тепла и коэффициент линейного расширения.

Электропроводность алюминия возрастает с понижением температуры: при 189 °C составляет 156 ед., а при 400 °C — 12,5.

Среди химических элементов алюминий отличается высокой активностью. Он легко реагирует с кислородом, образуя плотную окисную пленку, предохраняющую металл от дальнейшего влияния среды.

Свойства сплавов определяются входящими в его состав элементами.

По мере повышения температуры в металле растворяется водород, повышающий пористость материала. Примеси щелочных химических элементов (калия, натрия, кальция), кремния, магния способствуют резкому увеличению пористости алюминия.

Добавки меди, ниобия, никеля, марганца, железа, хрома, ванадия, циркония создают однородную структуру при остывании расплавленного материала. Влияние лигатурных добавок других компонентов на физические свойства металла и его сплавы учитывается в технологии литья изделий.

Наличие дополнительных материалов изменяет показатель проводимости тепла состава и температуру плавления. Например, при обычных условиях формирования алюминиевых сплавов сера и ее соединения уходят в шлак, не оказывая вредного влияния на свойства состава.

Такое же воздействие имеют фосфор, углерод, азот. Они не изменяют механические свойства сплава. Для производства литейных изделий из-за пониженной прочности чистый алюминий применяется редко.

Коррозионная стойкость металла тем выше, чем ниже в нем содержание примесей железа и кремния. Но их наличие несколько повышает прочность материала, снижая при этом пластичность и электропроводность.

Технические характеристики некоторых сплавов на основе алюминия

По технологическим особенностям сплавы подразделяются на основные группы:

  • литейные — обладают повышенными литейными технологическими свойствами;
  • деформируемые — легко поддаются обработке под давлением.

Например, создание алюминиевой конструкции, используемой в строительстве, требует особого вида сплава с повышенной прочностью, выдерживающего давление и нагрузку.

В зависимости от назначения составов на основе алюминия при их формировании руководствуются нормами и правилами, учитывающими:

  • проводимость тепла материалом;
  • точку перехода из расплава в твердое состояние;
  • наличие лигатурных компонентов, влияющих на технические параметры состава и повышающих прочность.

Соотношение основного компонента к добавкам влияет на показатель проводимости тепла сплава, учитывающегося при изготовлении радиаторов и других видов изделий, предназначенных для монтажа тепловых коммуникаций.

Сводные данные о проводимости тепла алюминиевых сплавов собраны в специальных справочниках. В них приводятся значения распространенных сплавов металла с кремнием, магнием, медью, цинком, дюралюминия. Имеются характеристики литейных сплавов при различных температурах с указанием теплофизических свойств состава. Основными считаются показатели:

  • плотности;
  • коэффициента теплопроводности;
  • коэффициента линейного теплового расширения;
  • температуры изменения прочности;
  • коррозионной устойчивости на воздухе;
  • удельного электрического сопротивления.

Анализ данных свидетельствует о зависимости коэффициента теплопроводности от роста температуры и состава материала. Низкая теплопроводность свойственна в основном литейным составам на основе алюминия с маркировками АК4, АЛ1, АЛ8.

Наиболее высокой плотностью обладают составы основного компонента с кремнием, цинком. Из легких материалов наиболее плотным является состав, содержащий магний. Содержание меди в материале повышает его прочность и устойчивость к коррозии.

Чем выше содержание в составе на основе алюминия, тем больше его теплопроводность, которая увеличивается при нагревании материала. Наличие лития в составе сплава приводит к уменьшению значения коэффициента теплопроводности.

Он содержит в незначительных количествах (0,05–7%) примеси железа, кремния, марганца, титана, циркония, магния, цинка и 91–93,5% алюминия и предназначен для изготовления сварных изделий, работающих при комнатных или кратковременно повышенных температурах.

Источник:

Алюминий и его сплавы: особенности материала и проведения сварки

svoystva_alyuminiya_udelnyy_ves_i_teploprovodnost__proizvodstvo__primenenie__splavy_i_temperatura_plavleniya_1-2-6507862

Немногим более века назад алюминий был редким и дорогим материалом. Из него не делали шин или рамы. Короткая история развития алюминия привела человечество к тому, что без этого металла не обходится ни одна сфера жизни, причем список областей применения постоянно расширяется. Объемы потребления алюминия растут с каждым годом.

Популярность материала основана на его:

1. положительных механических характеристиках;

2. высокой коррозионной стойкости к воздействию влаги и агрессивных сред;

3. небольшом удельном весе (это один из самых легких конструкционных материалов) при высокой прочности (важно и для шин и для рамы).

Особенности и применение алюминия

Чистый алюминий имеет:

  • низкую твердость, но высокую пластичность;
  • отличную электропроводность и деформируемость;
  • высокую химическую активность и коррозионные свойства (быстро окисляется с образованием защитной поверхностной пленки с высокой плотностью, твердостью и температурой плавления).

Чистота, стойкость в окислительных средах и нетоксичность материала предопределили широкое применение его в пищевой и медицинской промышленности. Из него даже делают сосуды для транспортировки и получения азотной кислоты и пр.

Из-за низкой прочности чистый алюминий редко используется как конструкционный материал при производстве рамы, трубы и т.д.

Как правило, в чистом виде он требуется в электротехнической, химической и пищевой промышленности при производстве шин, проволоки и другого электропроводного материала и элементов. В сплавах с магнием, медью, цинком, кремнием и пр.

этот легкий металл становится прочным и получает хорошие технологические свойства. Из сплавов выпускают уголки, рамы, профиль и пр.

Рост потребления изделий из алюминия и его сплавов стабилен. Налажено производство алюминиевой:

  • проволоки;
  • фольги;
  • чушек;
  • шин;
  • лент;
  • листов;
  • плит;
  • прутков;
  • рам;
  • профиля и пр.;
  • кровли;
  • сварных конструкций различного назначения.

Чистый алюминий, как правило, применяется в электротехнической (высока востребованность алюминиевых электротехнических шин, проволоки и пр.), пищевой и медицинской промышленности. В машиностроении используют изделия из легких алюминиевых сплавов. Алюминиевые рамы популярны при изготовлении транспортных средств.

Это перспективный во всех отношениях конструкционный материал. В конструкциях применяют полуфабрикаты — листы, профили, рамы, трубы и др. из деформируемых сплавов.

При изготовлении более сложных по конструкции решений или при проведении восстановления поврежденных литых изделий (рамы и пр.) требуется сварка алюминия, которая ведется разными способами.

Приоритетный выбирается в зависимости от целей, задач и вида сплава. Основная цель сварки — достижение высокого качества и прочности соединения.

Особенности плавления и сварки алюминия

Алюминий легко подвергается обработке под давлением в состоянии холодном и горячем. Сварка алюминия и его сплавов принципиально отлична от сварки стали Алюминий имеет высокую теплопроводность. Она в пять раз выше, чем у сталей, а потому и тепло активно отводится от свариваемого места. В связи с этим требуется обеспечение высоких вложений тепла.

У алюминия низка температура плавления и в процессе нагрева существенно снижается прочность. Это затрудняет быструю сварку из-за малой глубины провара, требует применения тока максимальной силы в начале с постепенным его снижением к концу сварки.

Текучесть расплавленного металла затрудняет управление сварочной ванной. При сварке приходится применять теплоотводящие подкладки. Очень мало времени необходимо для застывания сварочной ванны, что приводит к неполному газовыделению, образованию пор в шве, плохому соединению.

Дополнительная сложность состоит в том, что этот легкий металл при нагреве не изменит цвет, т.е. сварщик не получает визуальную информацию о достигнутой температуре. Такая специфика повышает риски повреждения и прожога шин, ленты, рамы, прочих элементов в процессе сварки.

Еще одна особенность алюминия в сравнении со сталями состоит в том, что при плавлении его литейная усадка в два раза выше. При затвердевании материала сварочной ванны развивается внутреннее напряжение. Следствием напряжений становится появление дефектов, включая горячие трещины. Склонность к их образованию приводит к ослаблению шва.

За поры ответственен растворенный в алюминии водород, стремящийся выйти из металла наружу. Трещины больше характерны для сплавов алюминия, они возникают при охлаждении металла из-за повышенного содержания кремния. Чтобы избежать осложнений, применяют:

  • более высокую в сравнении со сваркой стали силу сварочного тока;
  • предварительный нагрев заготовки, полуфабриката, рамы, шины, прутка, проволоки, пр.;
  • защитный газ или газовую смесь.

Особенности выбора материалов и сварочной проволоки

Сварочные материалы выбирают в соответствии с типом сварки. Если предстоит сварить технический алюминий с помощью ручной дуговой сварки, используют электроды ОЗА-1 и ОЗАНА-1.

В том случае, если будет завариваться неровность литья или трещины в силуминах, используют электроды ОЗА-2 и ОЗАНА-2, в обмазке которых присутствуют хлоридные и фторидные соли.

Эти компоненты не только обеспечивают устойчивую дугу, но и позволяют ликвидировать оксидную пленку.

В полуавтоматическом виде сварки алюминия и его сплавов применяют защитный газ или газовые смеси, а при аргоно-дуговой сварке — вольфрамовые электроды.

Сварка алюминиевых труб и других изделий из алюминия проводится обычно встык из-за особенностей металла.

Для создания стыковых соединений, где обеспечивается полное проплавление, потребуются удаляемые прокладки с канавками. По ним стечет расплавленный металл и шлаки.

В качестве присадочного материала, как правило, используется сварочная проволока, которая может состоять из чистого технического алюминия или сплава алюминия с:

  • марганцем;
  • магнием
  • кремнием;
  • медью.

При сварке алюминиевых сплавов металл сварочной проволоки необходимо подбирать соответственно химическому составу детали, за исключением сплавов алюминием. При данной ситуации проволока должна содержать больше магния, чем деталь.

Алюминиевая проволока считается довольно сложным материалом. Это касается как ее использования, так и хранения. Если герметичная упаковка вскрывается, рекомендуется использовать проволоку своевременно, поскольку после вскрытия начинается быстрое окисление материала с образованием слоя Al2O3. Температура его плавления в разы выше, что затрудняет сварку.

Хранение во вскрытой упаковке — это гарантия снижения качества проволоки. Ухудшение прогрессирует, если проволока оказывается во влажной среде. Образовавшийся на поверхности изделия слой оксида алюминия необходимо удалять.

Очищающий эффект достигается в момент сварки при положительной поляризации. Место будущего сварного шва на всех деталях и элементах, проволоке, трубах, рамах и пр., непосредственно перед проведением сварки тщательно освобождается от любых загрязнений — удаляется жир, пыль и так далее.

Способы сварки алюминия

Сварка алюминиевых сплавов и алюминия проводится несколькими способами. Ее ведут с применением специализированного оборудования и сварочных материалов. Зона сварки защищается инертными газами или флюсами. Среди способов выделяются:

  • сварка вольфрамовым электродом с использованием инертных газов (это специальные электроды для сварки алюминия — большего диаметра, нежели для сварки стали);
  • сварка штучными электродами без использования защитного газа (ручная);
  • более производительная сварка алюминия полуавтоматом в среде инертных газов (проволока при такой сварке подается автоматически).
Также может быть интересно:  Чем чугун отличается от стали: основные свойства и отличительные характеристики

Постоянным током прямой полярности алюминий не сваривается.

Для проведения сварки требуется переменный или постоянный ток обратной полярности: при наличии катодного распыления образовавшаяся оксидная пленка разрушится, что необходимо для сваривания алюминия и его сплавов.

При прямой полярности не происходит катодное распыления, а потому и пленка остается на проволоке и прочих элементах — рамах, уголках, листах и так далее.

Подготовка металла к сварке

Независимо от применяемого способа, сварка алюминиевых проводов, труб и других конструкционных элементов проводится только после тщательной очистки — подготовки свариваемых кромок, которая является залогом высоких результатов сварки. Для этого необходимо непосредственно перед началом процесса провести:

    • очистку от грязи и обезжиривание всех свариваемых деталей и присадочного материала с помощью любого подходящего растворителя (ацетон, авиационный бензин, Уайт-спирит и пр.);
    • при необходимости — разделку кромок (не требуется при сварке деталей до 4 мм толщиной; при сварке покрытыми электродами — разделка только при толщине материала более 20 мм);
    • при необходимости — отбортовку (для элементов из тонкого листа);
    • удаление Al2O3 механическим (кромки зачищают напильником, щеткой металлической, наждачной бумагой) или химическим методом;
    • удаление влаги с помощью легкого предварительного прогрева;
    • предварительный прогрев массивных деталей для снижения вероятности образования горячих трещин.

В связи с тем, что температура плавления алюминия низка, сварку следует вести быстро, с высокой скоростью перемещения горелки. Это позволяет избежать прожогов. Даже при проведении правильного предварительного прогрева при начале сварки любое изделие (проволока, рамы и пр.) остается относительно холодным, а потому сварку начинают при максимальной силе тока.

Далее силу тока уменьшают, поскольку часть тепла пойдет перед дугой, прогревая место сварки. Более того, если не уменьшить ток, процесс затруднится из-за того, что фронт тепла приблизится к концу деталей, а далее ему некуда будет деваться.

При сварке алюминия или сплавов металла в конце сварочного шва появляется кратер. Связано это с тем, что металл быстро затвердевает при высоком значении коэффициента термического расширения. Вогнутая поверхность кратера сжимается.

Может произойти ее разрыв вплоть до разрушения уже готового изделия по сварному шву. В связи с этим требуется провести за плавление кратера. На его месте должна образоваться выпуклость.

Добиться такого эффекта позволяет изменение в самом конце сварки движения дуги на обратное при продолжении подачи проволоки.

Источник:

Свойства алюминия

svoystva_alyuminiya_udelnyy_ves_i_teploprovodnost__proizvodstvo__primenenie__splavy_i_temperatura_plavleniya_1-3-6059020

Свойства алюминия, одного металлов, принадлежащих к 13-й группе согласно периодической таблице химических элементов, достаточно обширны. Основные группы свойств: физические и химические. Этот легкий металл сочетает сразу множество физических характеристик относительно плотности, теплопроводности, коррозийной стойкости и пластичности.

Физические свойства алюминия зависят, как и у множества металлов, от степени чистоты металла. Только особая чистота материала, наиболее приближенная к единице (99,996%), гарантирует самые высокие показатели относительно физических свойств. Именно благодаря высоким показателям металл отлично поддается ковке, штамповке и другим видам обработки.

Что примечательно, алюминий поддается практически любому виду сварки, будь то контактная, газовая или иная разновидность. Серебристо-белый легкий металл характеризуется высокой теплопроводностью, при этом обладает малой плотностью.

Показатели электрической проводимости также достаточно велики, поэтому материал постоянно используется в сфере кабельной промышленности.

Завершают перечень физических свойств легкого металла замечательная антикоррозийная стойкость и высокая пластичность.

Плотность материала

Плотность алюминия — это выражение массы материала в содержании единицы объема. Плотностью также называют предел массы вещества по отношению к занимаемому этим веществом объему. Именно по такой формуле вычисляется плотность легкого металла особой чистоты.

Ее показатель равен 2,7*10 в кубе кг/м3. Плотность – это свойство, от которого зависит и другая характеристика материала, а именно – прочность. Так как плотность легкого металла довольно мала, то и прочность, соответственно, невелика.

Потому алюминий не используется в качестве конструкторского материала.

Чтобы увеличить прочность металла, к нему добавляются другие элементы с более высокой плотностью. Под воздействием более плотных добавок, прочность алюминия резко возрастает. Также показатели прочности можно поднять с помощью применения механической или термической обработки.

В результате удачного сочетания в сплавах, алюминий приобретает ценные конструкционные качества, выраженные в хорошей механической прочности при малой плотности материала.

Сплавы на основе алюминия в некоторых отраслях промышленности с успехом заменяют такие металлы (сплавы), как медь или олово, цинк или свинец.

Теплопроводность

Теплопроводность алюминия — одно из его физических свойств. Оно, как и многие, зависит от чистоты структуры материала. То есть, чем ближе к единице чистота алюминия, тем выше и его свойства теплопроводности.

Технический алюминий, процентность которого равна приблизительно 99,49, имеет теплопроводность (при 200 градусах Цельсия) 209 Вт/(м*К).

Если же технический алюминий обладает процентностью 99,70, то значение его теплопроводности достигает 222 Вт/(м*К).

В то время, когда материал электролитически рафирован и его чистота 99,9% — значение теплопроводности уже при 190 градусах Цельсия повышается до 343 Вт/(м*К). В отличие от прочности, которая повышается при сплаве алюминия с другими металлами, свойства теплопроводности в этом случае уменьшаются.

Примером можно привести добавку Mn. Всего два процента такой добавки способны уменьшить теплопроводность алюминия со значения 209 Вт/(м*К) до показателя, равного 126 Вт/(м*К).

Стоит также отметить, что свойства теплопроводности алюминия настолько высоки, что преимущество относительно них есть лишь у меди и серебра.

Температура плавления алюминия — достаточно весомый показатель, который учитывается любой отраслью промышленности, работающей с данным материалом.

Температура плавления – показатель нестабильный, во многом он зависит от того, какие материалы применены для примеси с алюминием. От температуры плавления зависит скорость обработки материала, то есть, можно сказать, производственные возможности.

Наиболее часто алюминий обрабатывается в России, Австралии, Канаде и США. В этих странах крупная доля отрасли промышленности занимается плавкой алюминия.

У каждой страны имеются свои технологии плавки, со временем, благодаря экспериментам с добавлением различных материалов, позволившие минимально возможно снизить показатель температуры плавления алюминия.

Наиболее точный, стандартный показатель температуры плавления алюминия составляет 660,32 градуса Цельсия. В связи с таким большим показателем, плавление материала можно организовать только в специальных условиях и специально оборудованных помещениях.

Чтобы осуществить этот процесс в домашних условиях, первое, что необходимо – оборудование. Обычно для этого используется тигельная муфельная печь.

Теплоемкость

Теплоемкость алюминия, если взять показатель постоянного давления и температуру 291 составит 581 кал/град, моль. Но теплоемкость материала может значительно поменяться, если значение температуры будет низким.

Высокий показатель теплоемкости диктует свои условия относительно использования достаточно мощных источников тепла. Иногда применяет даже метод подогрева. Высота уровня коэффициента линейного расширения, а также незначительный модуль упругости, могут создать значительные сварочные деформации.

Такое обстоятельство диктует условия использования зажимных приспособлений с повышенным уровнем надежности.

Возникающие деформации в конструкциях, к которым следует подходить с ответственностью, устраняются уже после сварки.

Стоит отметить, что высокие показатели таких свойств, как теплоемкость и теплопроводность, относительно самого алюминия, а также его сплавов, значительно влияют на то, какой именно метод сварки следует выбрать.

Удельная теплоемкость алюминия, измеряемая в Дж/(кг*град. Цельсия), равна значению 920. Если брать показатели удельной теплоемкости, нужно отметить – они меняются зависимо от агрегатного состояния материала.

Удельное сопротивление

Удельное сопротивление алюминия выше по сравнению с аналогичной величиной меди. Но на показатель удельного сопротивления меди может существенно повлиять такой метод обработки, как отжиг. На алюминий этот метод практически не имеет влияния. При этом, температурные коэффициенты меди и алюминия идентичны. В кабельной промышленности довольно часто применяется оксидная изоляция.

Теплостойкость оксидированного алюминиевого провода составляет 400 градусов Цельсия. Вообще, удельное сопротивление рассматриваемого материала превышает аналогичный показатель меди в 1,65 раза.

Алюминиевые провода достаточно часто подвергаются оксидной изоляции. В то время, чтобы данный метод применить по отношению к медному проводу, его необходимо покрыть хотя бы тонким слоем алюминия.

Оксидированный алюминий служит материалом для изготовления катушек, способных работать при высоких температурах.

Химические свойства

Химические свойства алюминия выражают его валентность, свойства взаимодействия с окружающими сферами. Первое, что стоит отметить – алюминий обладает достаточно высокой химической активностью.

Если рассматривать ряд напряжений металлов, то данный материал займет место между магнием и цинком.

Алюминию свойственно быстрое окисление кислородом, взятым из воздуха, в результате чего получается прочная защитная оксидная пленка.

Именно эта пленка является препятствием на пути к дальнейшему окислению материала.

Также оксидная пленка оберегает изделия из алюминия от взаимодействия с другими веществами, контакт с которыми может привести к разрушению структуры материала.

Именно защитной пленке отводится роль фактора, повышающего антикоррозийную стойкость алюминия. Если нарушается данная оксидная защита, то материал легко вступает во взаимодействие с влагой даже при обычной температуре.

Источник:

Физические свойства алюминия

svoystva_alyuminiya_udelnyy_ves_i_teploprovodnost__proizvodstvo__primenenie__splavy_i_temperatura_plavleniya_1-4-1673940

Алюминий — химический элемент третей группы периодической системы Д.И. Менделеева.

Таблица физических свойств алюминия

Плотность , (кг/м3) 2,7
Температура плавленияТпл, °С 660
Температура кипенияТкип, °С 2 327
Скрытая теплота плавления, Дж/г 393,6
Теплопроводность l , Вт/м •град (при 20° С) 228
ТеплоемкостьСр, Дж/(г · град) (при 0–100°С) 0,88
Коэффициент линейного расширения α×10-6, 1/°С (пр°С) 24,3
Удельное электросопротивление ρ×10-8, Ом× м (при 20°С) 2,7
Предел прочности σ в, МПа 40–60
Относительное удлинение δ , % 40–50
Твердость по Бринеллю НВ 25
Модуль нормальной упругости E , ГПа 70
Также может быть интересно:  Какой выбрать инструмент: реноватор или гравер, отзывы и отличия

Плотность алюминия

Плотность твердого и расплавленного алюминия снижается по мере увеличения его чистоты:

Плотность алюминия при 20°С

Степень чистоты, % 99,25 99,40 99,75 99.97 99,996 99.9998
Плотность при 20°С, г/см3 2,727 2,706 2,703 2,6996 2,6989 2,69808

Плотность расплавленного алюминия при 1000°С

Степень чистоты, % 99,25 99.40 99.75
Плотность, г/см3 2,311 2,291 2,289

Температура плавления и кипения

В момент плавления алюминия возрастает объем металла: для алюминия чистотой 99,65 % — на 6,25%, для более чистого металла — на 6,60 %. По мере повышения степени чистоты алюминия температура его плавления возрастает:

Степень чистоты, % 99,2 99,5 99,6 99,97 99,996
Температура плавления, °С 657 658 659,7 659,8 660,24

Теплопроводность алюминия

Теплопроводность алюминия повышается с увеличением степени его чистоты. Для технического алюминия (99,49 и 99,70%) теплопроводность при 200°С равна соответственно 209 и 222 Вт/(м×К).

Для электро­литически рафинированного алюминия чистотой 99,9% теплопроводность при 190°С возрастает до 343 Вт/(м×К). Примеси меди, магния и марганца в алюминии снижают его теплопроводность.

Например, добавка 2 % Mn к алюминию снижает теплопроводность с 209 до 126 Вт/(м×К).

Электропроводность алюминия

Алюминий отличается высокой электропроводностью (четвертое место среди металлов — после серебра, меди и золота). Удельная электропроводность алюминия чистотой 99,99 % при 20°С равна 37,9 мкСм×м, что составляет 63,7% от электропроводности меди [59,5 мкСм×м].

Более чистый алюминий [99,999 %] обладает электропроводностью, равной 65,9% от электро­проводности меди. На электропроводность алюминия влияет ряд факторов: степень деформации, режим термической обработки и т. д., решающую же роль играет природа примесей, присутствующих в алюминии.

Примеси по их отрицательному влиянию на электропроводность алюминия можно расположить в следующий ряд: Cr, V, Mn, Ti, Mg, Ag, Сu, Zn, Si, Fe Ni.

Наиболее отрицательное влияние на электросопротивление алюминия оказывают примеси Сг, V, Мп и Ti . Поэтому в алюминии для электротехнической промышленности сумма Cr+V+Mn+Ti не должна превышать 0,015% (марка А5Е) и даже 0,01 % (А7Е) при содержании кремния соответственно 0,12 и 0,16 %.

Влияние примесей на электропроводность алюминия

Основными примесями в алюминии являются кремний, железо, медь, цинк и титан.

При малых содержаниях кремния в алюминии (0,06%) величина Fe : Si (в пределах от 0,8 до 3,8) сравнительно мало влияет на его электросопротивление.

При увеличении содержания кремния до 0,15—0,16% влияние Fe : Si возрастает. Ниже приведено влияние Fe : Si на электропроводность алюминия:

Fe : Si 1,07 1,44 2,00 2,68 3,56
Удельное электросопротивление алюминия,×10-2 мкОм·мм:
нагартованного 2,812 2,816 2,822 2,829 2,838
отожженного 2,769 2,771 2,778 2,783 2,788

Удельное электрическое сопротивление отожженной алюминиевой проволоки (ρ, мкОм·м) при 20°С в зависимости от содержания примесей можно приблизительно определить по следующей формуле: ρ=0,0264+0,007×(% Si)+0,0007×(% Fe) + 0,04×[% (Cr+V + Mn + Ti)].

Отражательная способность

С повышением степени чистоты алюминия возрастает его способность отражать свет от поверхности.

Так, степень отражения белого света от прокатанных алюминиевых листов (фольги) в зависимости от чистоты металла, возрастает следующим образом: для Аl 99,2%—75%, Аl 99,5%—84% и для Аl 99,8%—86%.

Поверхность листа, изготовленного из электролитически рафинированного алюминия чистотой 99,996%, отражает 90% падающего на него белого света.

Источник:

Алюминиевые сплавы — марки, свойства и применение

svoystva_alyuminiya_udelnyy_ves_i_teploprovodnost__proizvodstvo__primenenie__splavy_i_temperatura_plavleniya_1-5-1763556

Алюминий — серебристо-белый легкий парамагнитный металл. Впервые получен физиком из Дании Гансом Эрстедом в 1825 году. В периодической системе Д. И. Менделеева имеет номер 13 и символ Al, атомная масса равна 26,98.

Производство алюминия

Для производства алюминия используют бокситы — это горная порода, которая содержит гидраты оксида алюминия. Мировые запасы бокситов почти не ограничены и несоизмеримы с динамикой спроса.

Боксит дробят, измельчают и сушат. Получившуюся массу сначала нагревают паром, а затем обрабатывают щелочью — в щелочной раствор переходит большая часть оксида алюминия. После этого раствор длительно перемешивают.

На этапе электролиза глинозем подвергают воздействию электрического тока силой до 400 кА. Это позволяет разрушить связь между атомами кислорода и алюминия, в результате чего остается только жидкий металл.

После этого алюминий отливают в слитки или добавляют к нему различные элементы для создания алюминиевых сплавов.

Алюминиевые сплавы

Наиболее распространенные элементы в составе алюминиевых сплавов — медь, марганец, магний, цинк и кремний. Реже встречаются сплавы с титаном, бериллием, цирконием и литием.

Алюминиевые сплавы условно разделяют на две группы: литейные и деформируемые.

Для изготовления литейных сплавов расплавленный алюминий заливают в литейную форму, которая соответствует конфигурации получаемого изделия. Эти сплавы часто содержат значительные примеси кремния для улучшения литейных свойств.

Деформируемые сплавы сначала разливают в слитки, а затем придают им нужную форму.

Происходит это несколькими способами в зависимости от вида продукта:

  1. Прокаткой, если необходимо получить листы и фольгу.
  2. Прессованием, если нужно получить профили, трубы и прутки.
  3. Формовкой, чтобы получить сложные формы полуфабрикатов.
  4. Ковкой, если требуется получить сложные формы с повышенными механическими свойствами.

Марки алюминиевых сплавов

Для маркировки алюминиевых сплавов согласно ГОСТ 4784-97 пользуются буквенно-цифровой системой, в которой:

  • А — технический алюминий;
  • Д — дюралюминий;
  • АК — алюминиевый сплав, ковкий;
  • АВ — авиаль;
  • В — высокопрочный алюминиевый сплав;
  • АЛ — литейный алюминиевый сплав;
  • АМг — алюминиево-магниевый сплав;
  • АМц — алюминиево-марганцевый сплав;
  • САП — спеченные алюминиевые порошки;
  • САС — спеченные алюминиевые сплавы.

После первого набора символов указывается номер марки сплава, а следом за номером — буква, которая обозначает его состояние:

  • М — сплав после отжига (мягкий);
  • Т — после закалки и естественного старения;
  • А — плакированный (нанесен чистый слой алюминия);
  • Н — нагартованный;
  • П — полунагартованный.

Виды и свойства алюминиевых сплавов

Алюминиево-магниевые сплавы

Эти пластичные сплавы обладают хорошей свариваемостью, коррозийной стойкостью и высоким уровнем усталостной прочности.

В алюминиево-магниевых сплавах содержится до 6% магния. Чем выше его содержание, тем прочнее сплав. Повышение концентрации магния на каждый процент увеличивает предел прочности примерно на 30 МПа, а предел текучести — примерно на 20 МПа.

При подобных условиях уменьшается относительное удлинение, но незначительно, оставаясь в пределах 30–35%.

Однако при содержании магния свыше 6% механическая структура сплава в нагартованном состоянии приобретает нестабильных характер, ухудшается коррозийная стойкость.

Для улучшения прочности в сплавы добавляют хром, марганец, титан, кремний или ванадий. Примеси меди и железа, напротив, негативно влияют на сплавы этого вида — снижают свариваемость и коррозионную стойкость.

Алюминиево-марганцевые сплавы

Это прочные и пластичные сплавы, которые обладают высоким уровнем коррозионной стойкости и хорошей свариваемостью.

Для получения мелкозернистой структуры сплавы этого вида легируют титаном, а для сохранения стабильности в нагартованном состоянии добавляют марганец. Основные примеси в сплавах вида Al-Mn — железо и кремний.

Сплавы алюминий-медь-кремний

Сплавы этого вида также называют алькусинами. Из-за высоких технических свойств их используют во втулочных подшипниках, а также при изготовлении блоков цилиндров. Обладают высокой твердостью поверхности, поэтому плохо прирабатываются.

Алюминиево-медные сплавы

Механические свойства сплавов этого вида в термоупрочненном состоянии порой превышают даже механические свойства некоторых низкоуглеродистых сталей. Их главный недостаток — невысокая коррозионная стойкость, потому эти сплавы обрабатывают поверхностными защитными покрытиями.

Алюминиево-медные сплавы легируют марганцем, кремнием, железом и магнием. Последний оказывает наибольшее влияние на свойства сплава: легирование магнием значительно повышает предел текучести и прочности. Добавление железа и никеля в сплав повышает его жаропрочность, кремния — способность к искусственному старению.

Алюминий-кремниевые сплавы

Сплавы этого вида иначе называют силуминами. Некоторые из них модифицируют добавками натрия или лития: наличие буквально 0,05% лития или 0,1% натрия увеличивает содержание кремния в эвтектическом сплаве с 12% до 14%. Сплавы применяются для декоративного литья, изготовления корпусов механизмов и элементов бытовых приборов, поскольку обладают хорошими литейными свойствами.

Сплавы алюминий-цинк-магний

Прочные и хорошо обрабатываемые. Типичный пример высокопрочного сплава этого вида — В95. Подобная прочность объясняется высокой растворимостью цинка и магния при температуре плавления до 70% и до 17,4% соответственно. При охлаждении растворимость элементов заметно снижается.

Основной недостаток этих сплавов — низкую коррозионную стойкость во время механического напряжения — исправляет легирование медью.

Авиаль

Авиаль — группа сплавов системы алюминий-магний-кремний с незначительными добавлениями иных элементов (Mn, Cr, Cu). Название образовано от сокращения словосочетания «авиационный алюминий».

Применять авиаль стали после открытия Д. Хансоном и М. Гейлером эффекта искусственного состаривания и термического упрочнения этой группы сплавов за счет выделения Mg2Si.

Эти сплавы отличаются высокой пластичностью и удовлетворительной коррозионной стойкостью. Из авиаля изготавливают кованые и штампованные детали сложной формы. Например, лонжероны лопастей винтов вертолетов. Для повышения коррозионной стойкости содержание меди иногда снижают до 0,1%.

Также сплав активно используют для замены нержавеющей стали в корпусах мобильных телефонов.

Физические свойства

  • Плотность — 2712 кг/м3.
  • Температура плавления — от 658°C до 660°C.
  • Удельная теплота плавления — 390 кДж/кг.
  • Температура кипения — 2500 °C.
  • Удельная теплота испарения — 10,53 МДж/кг.
  • Удельная теплоемкость — 897 Дж/кг·K.
  • Электропроводность — 37·106 См/м.
  • Теплопроводность — 203,5 Вт/(м·К).

Химический состав алюминиевых сплавов

Алюминиевые сплавы
Марка Массовая доля элементов, % Плотность, кг/дм³
ГОСТ ISO 209-1-89 Кремний (Si) Железо (Fe) Медь (Cu) Марганец (Mn) Магний (Mg) Хром (Cr) Цинк (Zn) Титан (Ti) Другие Алюминий не менее
Каждый Сумма
АД000 A199,8 1080A 0,15 0,15 0,03 0,02 0,02 0,06 0,02 0,02 99,8 2,7
АД00 1010 A199,7 1070A 0,2 0,25 0,03 0,03 0,03 0,07 0,03 0,03 99,7 2,7
АД00Е 1010Е ЕА199,7 1370 0,1 0,25 0,02 0,01 0,02 0,01 0,04 Бор:0,02 Ванадий+титан:0,02 0,1 99,7 2,7

В далеком прошлом из-за высокой стоимости алюминия его использовали для изготовления ювелирных изделий. Так, весы с алюминиевыми и золотыми чашами были подарены Д. И. Менделееву в 1889 г.

Когда себестоимость алюминия снизилась, мода на ювелирные изделия из этого металла прошла. Но и в наши дни его используют для изготовления бижутерии. В Японии, например, алюминием заменяют серебро при производстве национальных украшений.

Столовые приборы

По-прежнему пользуются популярностью столовые приборы и посуда из алюминия. В частности, в армии широко распространены алюминиевые фляжки, котелки и ложки.

Стекловарение

Алюминий широко применяют в стекловарении. Высокий коэффициент отражения и низкая стоимость вакуумного напыления — основные причины использования алюминия при изготовления зеркал.

Пищевая промышленность

Алюминий зарегистрирован как пищевая добавка Е173. Ее используют в качестве пищевого красителя, а также для сохранения продуктов от плесени. Е173 окрашивает кондитерские изделия в серебристый цвет.

Военная промышленность

Из-за небольшого веса и низкой стоимости алюминий широко применяют при изготовлении ручного стрелкового оружия — автоматов и пистолетов.

Ракетная техника

Алюминий и его соединения используют в качестве ракетного горючего в двухкомпонентных ракетных топливах и в качестве горючего компонента в твердых ракетных топливах.

Алюмоэнергетика

В алюмоэнергетике алюминий используют для производства водорода и тепловой энергии, а также выработки электроэнергии в воздушно-алюминиевых электрохимических генераторах.

Источник:

Оцените статью
Станки и устройства