Какая плотность у сплава латуни: физические свойства и применение латуни

Латунь, как известно, представляет собой сплав меди с цинком, в который в незначительных количествах могут добавляться и другие химические элементы. Химический состав определяет свойства латуни, которые следует обязательно учитывать, подбирая материал для решения конкретных технологических задач.

kakaya_plotnost_u_splava_latuni_fizicheskie_svoystva_i_primenenie_latuni_1-2861203Общие свойства

Добавление цинка к меди (а именно так производят латунь) позволяет получить сплав, отличающийся от основного металла не только своими свойствами и цветом, но также и более низкой стоимостью.

При этом плотность итогового сплава, в котором цинк может содержаться в количестве 5–45%, незначительно отличается от аналогичного параметра основного металла – меди.

Для увеличения твердости латуни, а также улучшения ее антифрикционных и других механических свойств в процессе производства ее подвергают различным видам дополнительной обработки.

Если говорить о наиболее значимых свойствах латуни, то к ним следует отнести:

  1. высокую устойчивость к коррозии в обычных условиях эксплуатации;
  2. достаточно хорошую стойкость к воздействию агрессивных сред, таких как водно-солевые растворы, углекислый газ, органические кислоты;
  3. красивый светло-золотистый цвет, что позволяет использовать этот материал для изготовления предметов декоративного назначения (которые даже на фото выглядят очень привлекательно);
  4. подверженность обработке методами пластической деформации как в горячем, так и в холодном состоянии (при этом, что немаловажно, цвет готового изделия практически не изменяется);
  5. невысокую электро- и теплопроводность;
  6. простоту и невысокую стоимость производства;
  7. возможность применять пайку с использованием как мягких, так и твердых припоев.

Отдельные марки латуни, в частности те, в химическом составе которых содержится более 20% цинка, плохо переносят повышенную влажность: в таких условиях поверхность изделий из них может растрескиваться.

Ситуация еще более усугубляется, если во влажной атмосфере, в которой эксплуатируются такие изделия, содержится значительное количество аммиака.

Тогда латунь не только покрывается трещинами и утрачивает первоначальный цвет, но и теряет свои хорошие эксплуатационные характеристики.

Между тем можно улучшить свойства латунных сплавов данной категории, если изделия из них после производства одним из методов пластической деформации подвергнуть отжигу при температуре 240–260°. Такая процедура, которую часто называют нагартовкой, приводит к повышению прочности и твердости латуни, а также снятию остаточных напряжений в ее внутренней структуре.

Улучшение эксплуатационных характеристик

Чтобы улучшить такие свойства латунных сплавов, как плотность, цвет, твердость, антикоррозионная стойкость и другие, в них, кроме меди и цинка, добавляют легирующие элементы, к числу которых относятся олово, железо, мышьяк, алюминий, никель, марганец и др.

Количество таких элементов, добавляемых в состав латуни, очень незначительно. Как правило, оно не превышает нескольких процентов.

Самыми значимыми свойствами, которые удается улучшить в процессе легирования латуни, являются кавитационная плотность, износостойкость и устойчивость к коррозии.

Легирующие элементы, добавляемые в химический состав латуни, по-разному влияют на ее свойства. Так, кремний при превышении его содержания в сплаве, уменьшает его плотность и, соответственно, ухудшает его прочностные характеристики. Если же в дополнение к кремнию в латунь добавить свинец, то она окрасится в красивый цвет, а ее антифрикционные свойства усилятся.

Чтобы улучшить такое свойство латуни, как временное сопротивление на разрыв, в ее состав добавляют олово, алюминий или марганец.

Если латунь легировать марганцем и железом, количество которых не должно превышать 2–3%, можно значительно улучшить ее коэффициент относительного удлинения.

Что характерно, другие химические элементы, используемые для легирования латуни, ухудшают данный показатель.

Для повышений коррозионной устойчивости латуни в ее состав добавляют такие элементы, как никель, алюминий, олово и марганец. Особенно стоит отметить никелированную латунь, которую из-за цвета называют белой. Поверхность изделий из таких сплавов за счет содержания в их составе никеля не подвержена растрескиванию даже при эксплуатации в условиях повышенной влажности.

Добавление олова в состав латуни позволяет увеличить ее плотность и, соответственно, такое ее свойство, как прочность. Изделия из таких сплавов можно успешно эксплуатировать в соленой воде. Среди большого разнообразия марок латуни есть специально созданные для применения в условиях постоянного воздействия морской воды.

Свинец в латунь добавляют преимущественно для того, чтобы обеспечить ей хорошую обрабатываемость резанием.

Этот элемент обеспечивает формирование короткой и хорошо ломающейся стружки в процессе обработки на токарном, фрезерном или сверлильном оборудовании.

Кроме того, содержание свинца при обработке латуни металлорежущими инструментами гарантирует получение поверхности с небольшими показателями шероховатости.

Достаточно редким элементом, при помощи которого выполняют легирование латуни, является мышьяк.

Изделия, изготовленные из такой латуни, успешно эксплуатируются в пресных высокоагрессивных жидких средах, находящихся в состоянии нормальной или повышенной температуры.

Если в химический состав латуни, легированной мышьяком, добавить железо и никель, то изделия из нее можно успешно эксплуатировать в кислотных и щелочных средах.

Хорошо поддаются резке, в том числе лазерной, латуни с содержанием цинка менее 42%

Преимущества и недостатки литейных латуней

Латуни, относящиеся к категории многокомпонентных, делятся на две большие группы:

  • литейные;
  • обрабатываемые методами пластической деформации.

Медно-цинковые сплавы, относящиеся к литейной категории, активно используются в современной промышленности.

Высокой популярности таких материалов способствует то, что они демонстрируют низкую склонность к газонасыщению, что, в свою очередь, позволяет получать из них отливки с высокой плотностью и достойной устойчивостью к коррозии.

Хорошему раскислению таких латуней, происходящему в процессе литья, способствует то, что некоторая часть цинка при выполнении плавки испаряется.

К наиболее значимым свойствам латуней, относящихся к литейной категории, следует причислить:

  • высокую текучесть в расплавленном состоянии;
  • незначительную усадку в процессе выполнения литья;
  • механические характеристики, во многом схожие с аналогичными параметрами оловянных и алюминиевых бронз;
  • простоту и невысокую стоимость производства, если проводить сравнение с технологией получения бронзовых сплавов.

Металлы данной категории имеют и некоторые недостатки.

  • В процессе выполнения литья в изделиях могут формироваться кристаллизационные раковины достаточно большого размера.
  • В латунь необходимо добавлять специальные флюсы, чтобы минимизировать потери цинка, которые происходят в результате испарения данного металла.

Исправление таких недостатков, связанных с плавлением латуни, сопряжено со значительными финансовыми затратами. Если не предпринимать таких мер, повышающих себестоимость готового сплава, то большую его часть придется отправить на вторичную переработку.

Деформируемые латунные сплавы

Латуни, готовые изделия из которых и заготовки для дальнейшей обработки, производят методами пластической деформации, могут относиться к одно- или двухфазным. Сплавы первой категории содержат в своем химическом составе не более 30% цинка, вторые – 40–45%.

Двухфазные латуни хорошо поддаются пластической обработке только в горячем состоянии, при этом цвет их поверхности остается неизменным. В холодном состоянии они демонстрируют очень невысокую пластичность. Латуни однофазной группы, также отличающиеся постоянством цвета, можно подвергать обработке методами пластической деформации как в холодном, так и в горячем состоянии.

Предметы из латуни отличаются не только своим привлекательным внешним видом, о чем можно судить даже по фото, но и отличными механическими свойствами, что позволяет успешно использовать их не только в декоративных, но и в практических целях.

Источник:

Латунь. Свойства латуни. Применение латуни

kakaya_plotnost_u_splava_latuni_fizicheskie_svoystva_i_primenenie_latuni_1-1-2165212

Свойства латуни

В данной статье речь пойдёт о латуни, о её применении и свойствах. 2 трети медь и 1 треть цинка, — таков классический состав латуни. Это сплав, который известен со времен древнего Рима.

Но ведь цинк открыли лишь в 16-ом веке, возразят некоторые. Официально, да. Но, неофициально этот элемент был известен и раньше. Только римляне звали его, вернее цинкосодержащую породу, галмеем.

Древние люди верили, что именно он окрашивает медь в желтый цвет. Теперь же известно, что цинк, всего лишь разбавляет белым, насыщенный красный цвет меди. В итоге, получается солнечный материал.

Видимо, в Риме изготавливали латунь в пропорциях 30% цинка, 70% меди. Есть и вариант с содержанием цинка от 5-ти до 20-ти процентов, но в этом случае сплав красный. У видов латуни даже есть обозначения. На материале ставится заглавная Л и проценты. Последние указывают содержание в сплаве меди.

Бывают также сплавы латуни не из двух, а большего числа компонентов. В этом случае, после буквы Л стоят еще заглавные буквы. Каждая из них обозначает добавленный металл.

Среди таковых бывают: — олово, свинец, никель. Их добавляют, чтобы увеличить антикоррозийные свойства материала. Иначе, латунь не могла бы быть «игроком», к примеру, на рынке судоходства. Сплав классического состава изнашивается от соленой воды.

Применение латуни

Латунь мягка, легко поддается ковке, при этом прочна. Поскольку, внешне металл напоминает золото, его широко применяют ювелиры. Сплав становится материалом для посуды, фурнитуры, украшений, орденов.

К слову, знаки отличия, покрывают сплавом с 15% цинка и 5% алюминия. Именно такая формула внешне максимально напоминает золото и, при этом, устойчива к коррозии. Всего же, в ювелирном деле используют 3 разновидности латуни: — желтую (М 67/33), золотистую (М 75/25), зеленую (М 60/40).

Украшения из сплава чистят щавелевой кислотой. Она отлично полирует поверхность. Приобрести «элексир» можно в обычных магазинах хозяйственных товаров. Правда, кислоту, необходимо разбавить. 200 граммов вещества размешивают в 10 литрах воды и, только потом, очищают изделия из латуни.

Мастера называют латунь «вечный металл». Изделия из нее не знают сносу. К драгоценным металл не относится, а посему серьги, браслеты, кольца из него, лишь бижутерия. Однако, некоторые изделия из сплава статусные и стоят приличных денег.

Так, корпуса знаменитых зажигалок Zippo в большинстве именно латунные. В городке Брэндфорд штата Пенсильвания, где расположен завод, выпускают более 60-ти тысяч зажигалок в день. Поскольку в их составе медь и цинк, изделия желтые. Стальной цвет им придают с помощью гальванизации, то есть напыления на поверхность других металлов серебристых оттенков.

Двусоставную латунь с максимальным содержанием меди пускают на змеевики, машинные запчасти, техническую аппаратуру. Болты, гайки, шурупы изготавливают из сплава со средним содержанием красного металла.

Многокомпонентные латуни пригождаются при производстве самолетов, водных судов, труб ( в том числе, и для холодильного оборудования), часов, пружин, арматуры, сепараторов. Пригождается сплав и в полиграфии. Там из латуни делают матрицы для печати.

Также может быть интересно:  Дюбель-гвозди для бетона: разновидности, основные характеристики, существующие размеры и способы установки

А как же делают сам сплав? Сначала расплавляют медь. Металл помещают в резервуары из огнеупорной глины. Те, в свою очередь, — в специальные промышленные печи. В жидкую медь добавляют «по вкусу» цинк. Его закидывают прямо кусками.

Вот и вся технология. В качестве топлива, обычно, используют угль. Для форм, куда отливают латунь, закупают песок. Если необходимы тонкие листы сплава, смесь выливают в металлические емкости, которые называют изложницы.

Загвоздкой в изготовлении металла стала летучесть цинка. При плавке, он попросту испаряется. Приходится применять специальные аппараты, конденсирующие пары и возвращающие элемент в сплав.

Около трети полученного металла отправляют на повторную переплавку. Дело в том, что при литье в формы, латунь дает сильную усадку, образуются прогибы и полости (раковины).

Их срезают и отдают на переработку. Готовая латунь размягчается при температуре не меньше 800 градусов Цельсия. Минимальна планка при большом содержании в сплаве Zn. Чем его меньше, тем выше планка плавления. Такую латунь с высоким содержанием меди (около 90%) называют томпак.

В России на производстве латуни специализируются:

  • красноярское предприятие КРАМЗ
  • самарский завод вторичных сплавов
  • Уралэлектромедь из Верхней Пышмы
  • московские группы компаний Элекмед, Nermet, Дельта
  • столичные предприятия Металлокоммерция и Интерметаллик

Внешне латунь напоминает бронзу. Последнюю, кстати, сплав с цинком вытесняет с интерьерного рынка. Бронзовые смесители и фурнитуру в магазинах, а значит, и домах заменяют латунные.

Они легче поддаются полировке, проще в уходе. Сантехническую латунь часто делают с примесями или покрывают специальными составами. Это делается, чтобы окрасить металл в необычные цвета.

Так, в тренде черные краны из латуни.

Из сплава взялись ковать изголовья для кроватей. Они смотрятся легко, воздушно, что на руку владельцам небольших спален. Немаловажна и эстетическая привлекательность кованой мебели. Латунь захватила и рынок светильников и кухонных вытяжек.

Метал латунь признан мировым сообществом, важнейшим из медных сплавов. Как видно, она нашла применение практически повсеместно. Разве, что печатное слово, пока, латуни не подвластно.

Хотя, буквы на станицах книг, документов – это тоже сплав, только сурьмы, свинца и олова. Именно из этого состава изготавливают шрифты в типографиях.

Источник:

Латунь сплав. Латунь состав. Свойства латуни. Применение латуни. Литейная латунь. Диаграмма состояния медь-цинк.

kakaya_plotnost_u_splava_latuni_fizicheskie_svoystva_i_primenenie_latuni_1-2-4570748

Латунь — это двойной или многокомпонентный сплав на основе меди, где основным легирующим элементом является цинк. Латуни могут иметь в своем составе до 45 % цинка. Повышение содержания цинка до 45 % приводит к увеличению предела прочности до 450 МПа. Максимальная пластичность имеет место при содержании цинка около 37 %.

При сплавлении меди с цинком образуется ряд твердых растворов α, β, γ, ε.

Диаграмма состояния медь–цинк

Из диаграммы состояния медь–цинк видно, что в зависимости от состава имеются однофазные латуни, состоящие из α–твердого раствора, и двухфазные (α + β)–латуни.

По способу изготовления изделий различают латуни деформируемые и литейные.

Деформируемые латуни маркируются буквой Л, за которой следует число, показывающее содержание меди в процентах, например в латуни Л62 содержится 62 % меди и 38 % цинка.

Если кроме меди и цинка, имеются другие элементы, то ставятся их начальные буквы ( О – олово, С – свинец, Ж – железо, Ф – фосфор, Мц – марганец, А – алюминий, Ц – цинк).

Количество этих элементов обозначается соответствующими цифрами после числа, показывающего содержание меди, например, сплав ЛАЖ60-1-1 содержит 60 % меди, 1 % алюминия, 1 % железа и 38 % цинка.

Однофазные α–латуни используются для изготовления деталей деформированием в холодном состоянии. Изготавливают ленты, гильзы патронов, радиаторные трубки, проволоку.

Для изготовления деталей деформированием при температуре выше 500oС используют (α + β)–латуни. Из двухфазных латуней изготавливают листы, прутки и другие заготовки, из которых последующей механической обработкой изготавливают детали. Обрабатываемость резанием улучшается присадкой в состав латуни свинца, например, латунь марки ЛС59-1, которую называют “автоматной латунью”.

Латуни имеют хорошую коррозионную стойкость, которую можно повысить дополнительно присадкой олова. Латунь ЛО70-1 стойка против коррозии в морской воде и называется “морской латунью“. Добавка никеля и железа повышает механическую прочность до 550 МПа.

Литейные латуни также маркируются буквой Л. После буквенного обозначения основного легирующего элемента (цинк) и каждого последующего ставится цифра, указывающая его усредненное содержание в сплаве.

Например, латунь ЛЦ23А6Ж3Мц2 содержит 23 % цинка, 6 % алюминия, 3 % железа, 2 % марганца. Наилучшей жидкотекучестью обладает латунь марки ЛЦ16К4. К литейным латуням относятся латуни типа ЛС, ЛК, ЛА, ЛАЖ, ЛАЖМц.

Литейные латуни не склонны к ликвации, имеют сосредоточенную усадку, отливки получаются с высокой плотностью.

Латуни являются хорошим материалом для конструкций, работающих при отрицательных температурах.

Источник:

Марки и химический состав латуни

kakaya_plotnost_u_splava_latuni_fizicheskie_svoystva_i_primenenie_latuni_1-3-4197823

Двойные латуни — это сплав меди и цинка, в котором остальные элементы содержатся в качестве примесей. В составе латуни содержание цинка по массе не превышает 40 %, а минимальное его количество — 4 %. Двойные латуни — это преимущественно сплавы с α-структурой (Л96, Л90, Л85, Л68 и др.), которая имеет ГЦК решетку.

Кроме α-твердого раствора, медь с цинком образуют ряд промежуточных фаз: β, γ и др. Ближайшая к меди промежуточная β-фаза — это твердый раствор на основе соединения CuZn с ОЦК решеткой. Высокотемпературная β-фаза достаточно пластична, поэтому многие марки латуней при горячей деформации нагревают в однофазную β-область.

При понижении температуры до 454°—468°С и в зависимости от концентрации легирующего цинка происходит переход β-фазы в более хрупкую и твердую β’-фазу.

γ-фаза представляет собой твердый раствор на основе соединения Cu5Zn8, отличается очень высокой хрупкостью и ее нахождение в конструкционных сплавах меди не допускается.

Фазовый состав двухкомпонентных (простых) латуней

В структуре однофазных латуней, в которых содержание цинка близко к пределу растворимости цинка в твердом растворе меди 39%, присутствует небольшое количество неравновесной β-фазы из-за медленно протекающих диффузионных процессов в медно-цинковых сплавах при низких температурах. Такое количество включения β-фазы не оказывают заметного влияния на свойства α-латуней. По механическим и технологическим свойствам двухфазные простые латуни относятся к однофазным α-латуням.

Влияние примесей на свойства

Примеси не являются основными легирующими элементами простых латуней, но они влияют на свойства сплавов. Получить сплав без примесных атомов практически невозможно, т. к. посторонние элементы содержатся в сырье для производства меди и цинка.

Сверхчистые металлы имеют высокую стоимость и их применение узкоспециализированно и не оправдано для массового производства. Количество примесей контролируется стандартами, что гарантирует механические и технологические свойства марочных сплавов меди.

Отрицательно влияют на свойства латуней легкоплавкие примеси, которые ограниченно растворяются в медно-цинковых сплавах. Легкоплавкие включения в составе латуни выделяются по границам зерен и ухудшают пластические свойства при горячей деформации. Однофазные α-латуни наиболее чувствительны к таким примесям.

Примеси, которые не образуют самостоятельных фаз, не влияют отрицательно на механические и технологические свойства латуней.

  • Алюминий находится полностью в твердом растворе и как примесь не ухудшает свойства латуней. Малые добавки алюминия при плавке образуют на поверхности расплава защитную пленку из оксида алюминия. Это препятствует испарению и угару цинка.
  • Никель и марганец в малых концентрациях входят в твердый раствор и слабо влияют на физические, механические и технологические свойства латуней. Никель поднимает температуру рекристаллизации латуней.
  • Железо при комнатной температуре имеет низкую растворимость в медно-цинковом твердом растворе и образует в латунях самостоятельную γFe-фазу. Эта ферромагнитная фаза существенно изменяет магнитные свойства латуней. В составе антимагнитной латуни концентрация железа не превышает 0,03 %. Железо повышает прочностные и технологические качества сплавов, т. к. затрудняет рекристаллизацию и измельчает зерно.
  • Кремний — примесь, которая входит в твердый раствор. Кремний улучшает пайку и сварку латуней, повышает стойкость к коррозионнму растрескиванию.
  • Висмут требует особого контроля, он не растворяется в латунях сплавах в твердом состоянии и создает легкоплавкую эвтектику на границах зерен, которая состоит из чистого висмута. Висмут провоцирует горячеломкость латуней, оказыва более сильное влияние на однофазные. Его концентрация в латунях лимитировано 0,002—0,003%
  • Свинец слабо растворим в медно-цинковых сплавах в твердом состоянии и при затвердевании выделяется в элементарном виде на границах зерен в форме мелких частиц сферической формы. Примеси свинца ухудшают пластичность α-латуней при повышенных температурах. Свинец провоцирует горячеломкость, особенно однофазных латуней, поэтому содержание свинца в двойных α-сплавах не превышает 0,03 %. Добавки свинца в состав латуни улучшают обрабатываемость резанием.
  • Сурьма — вредная примесь в медно-цинковых сплавах. Она ухудшает технологическую пластичность при горячей и холодной обработках давлением. Концентрации сурьмы до 0,1% в двухфазных латунях препятствуют обесцинкованию.
  • Мышьяк растворяется в твердой меди до 5%по массе при температуре 25°С, но в медно-цинковом твердом растворе его растворимость не более 0,1%. Хрупкая промежуточная фаза As2Zn образуется при концентрация мышьяка более 0,5%, Эта фаза выделяется в виде прослоек на границах зерен, что приводит к ломкости латуней. Мышьяк в малых количествах 0,025—0,06 % при микродобавках защищает латуни от коррозионного растрескивания и обесцинкования в морской воде.
  • Фосфор малорастворим в медно-цинковых сплавах при затвердевании. В твердом растворе фосфор образует промежуточную фазу, которая повышает твердость и сильно снижает пластические свойства латуней. Небольшие количества фосфора повышают механические свойства латуней и уменьшают диаметр зерен отливок. Скорость роста зерен в деформированных латунях увеличивается из-за фосфора во время рекристаллизацонного отжига. Медно-цинковые сплавы не нуждаются в раскислении фосфором, т. к. цинк — более сильный раскислитель, чем фосфор В промышленных марках латуней содержание фосфора не превышает 0,005—0,01 %

В специальные, многокомпонентные латуни к основному легирующему элементу цинку для улучшения свойств сплава добавляют алюминий, марганец, железо, никель, кремний, Ni, Si, Sn, Pb, As. В состав сплава вводят один или несколько перечисленных элементов совместно. Содержание каждого элемента не превышает 1—3 %.

Для чего в медно-цинковые сплавы — латуни вводят помимо цинка другие легирующие элементы:

  1. повышение механических (прочностных) свойств;
  2. улучшение коррозионной стойкости;
  3. повышение стойкости при кавитации, антифрикционных свойств, обрабатываемости резанием

Легирующие элементы Al, Sn, Si, Mn, Ni растворяются в α и β фазах латуней, повышают прочность и твердость латуни, но уменьшают пластичность и вязкость. Алюминий и олово сильнее упрочняют латуни, чем кремний и марганец. Свинец снижает прочность латуней. Комплексное легирование несколькими элементами наибольше упрочняет медно-цинковые сплавы, но уменьшает относительное удлинение по сравнению с двойными сплавами системы Cu-Zn. Добавки железа и марганца до 2—3 %, которые повышают пластичность специальных латуней. Комплексное легирование латуней сохраняет хорошую обрабатываемость давлением при высоких температурах и несколько худшую при низких. Легирующие элементы Al, Mn, Si, Ni увеличивают коррозионную стойкость латуней, а никель повышает стойкость к коррозионному растрескиванию.

Также может быть интересно:  Особенности цементации металлов: технология процесса, выбор рабочей среды

Ферромагнитная фаза с железом γFe кристализируется в специальных латунях ЛАЖ-1-1 и ЛЖМц59-1-1 и создает дополнительные центры кристаллизации. Такие сплавы образуют мелкозернистую литую структуру.

Частицы γFe-фазы препятствуют росту зерна при рекристаллизационном отжиге после пластической деформаци. Это свойство используют для получения мелкозернистой структуры деформированных полуфабрикатов.

Свинец практически не растворяется в медной основе латуней и располагается в виде дисперсных частиц в объеме и на границах зерен . Свинцовые латуни ЛС74-3, ЛС63-3, ЛС59-1 и др. отлично обрабатываются резанием и образуют сыпучую стружку. Свинец улучшает антифрикционные свойства многокомпонентных латуней.

Влияние легирующих элементов на фазовые границы. Коэффициенты Гийе

Легирующие элементы в многокомпонентных латунях смещают границы между фазовыми областями α и α+β (39 % Zn) при темперетурах от 450°С и ниже в двойной системе Cu-Zn .

Границы двухфазной области α+β’ в системе Cu-Zn почти на меняют полжения при понижении температуры. Положение границы α/(α+β’) при 450°С соответствует 39% концентрация Zn, а межфазной границы (α+β’)/ β’ — 46% Zn.

По положению этих границ оценивают фазовый состава многокомпонентных латуней. Для этого вводят коэффициент Гийе замены цинка в формулу латуни. Гийе установил, что влияние легирующих элементов на фазовый состав аналогично увеличению или уменьшению концентрации цинка.

Коэффициент Гийе показывает, какому содержанию цинка соответствует 1%по массе легирующего элемента степени изменения на фазового состава латуни.

Коэффициенты Гийе

Si Al Sn Pb Fe Mn Ni
10…12 >4…6 2 1 0,9 0,5 -1,4

Формула для определения кажущегося по структуре содержания цинка X:

[(A+Σkici)/(A+B+Σkici)]100%

  • А — содержание цинка в сплаве
  • В — содержание меди
  • ci — концентрация i-го элемента, вводимого в латунь
  • ki — коэффициент Гийе для i-го легирующего элемента.

Только никель повышает растворимость цинка в меди. Увеличении содержания никеля в (α + β)-лaтyни уменьшает количество β-фазы, при достаточно высоком содержании Ni сплав становится однофазной α-латунью.

Отальные легирующие элементы снижают растворимость цинка в меди и сдвигают границу между фазовыми областями в сторону более низкого содержания цинка. Кремний и алюминий силнее всего снижают растворимость цинка в меди и увеличивают количество β-фазы в специальных латунях.

Когда концентрация расчетного цинка в составе латуни 46 % и больше, специальная латунь приобретает однофазную β’-структуру .

Железо и свинец не растворимы в медно-цинковых сплавах в твердом состоянии, поэтому коэффициенты Гийе для этих металлов близки к единице, а линии, разделяющие фазовые области , соответствуют границе раздела двухфазных областей с трехфазными: α+γFe/α+β+γFe и α+Pb/α+β+Pb

Химический состав свинцовых латуней

Марка Массовая доля, % Расчетная плотность,г/см3 Пример применения
Элемент Сумма прочихэлементов
Сu Рb Fe Sn Ni Al Si Sb Bi P Zn
ЛС74–3 72,0–75,0 2,4–3,0 0,1 0,005 0,002 0,01 Ост. 0,25 8,5 Ленты, полосы, прутки
ЛС64–2 63,0–66,0 1,5–2,0 0,1 0,005 0,002 0,01 Ост. 0,3
ЛС63–3 62,0–65,0 2,4–3,0 0,1 0,10 0,005 0,002 0,01 Ост. 0,25 8,5 Ленты, полосы, прутки, проволока
ЛС59–1В 57,0–61,0 0,8–1,9 0,5 0,01 0,003 0,02 Ост. 1,5 8,4 Прутки
ЛС59–1 57,0–60,0 0,8–1,9 0,5 0,3 0,01 0,003 0,02 Ост. 0,75 8,4 Листы, ленты, полосы, прутки, профили,трубы, проволока, поковки
ЛС58–2 57,0–60,0 1,0–3,0 0,7 1,0 0,6 0,3 0,3 0,01 Ост. 0,3 8,4 Полосы, прутки, проволока
ЛС58–3 57,0–59,0 2,5–3,5 0,5 0,4 0,5 0,1 Ост. 0,2 8,45 Прутки
ЛС59–2 57,0–59,0 1,5–2,5 0,4 0,3 0,4 0,1 Ост. 0,2 8,4 Прутки
ЛЖС58–1–1 56,0–58,0 0,7–1,3 0,7–1,3 0,01 0,003 0,02 Ост. 0,5 8,4 Прутки

Источник:

Латуни

kakaya_plotnost_u_splava_latuni_fizicheskie_svoystva_i_primenenie_latuni_1-4-4037822

Классификация латуней

Латуни – это сплавы на основе меди и цинка. По химическому составу они подразделяются на простые (только медь и цинк) и специальные (наряду с медью и цинком содержат Pb, Fe, Al, Sn и другие элементы). Химический состав латуней определен в ГОСТ 15527-2004.

Простые латуни маркируются буквой Л и цифрой, обозначающей процентное содержание меди:Л96, Л90, Л85, Л80, Л75, Л68, Л63. Содержание цинка определяется по остатку от 100%.

Например, Л63 содержит 63% меди и 37% цинка. Простые латуни называют также двойными латунями (два основных компонента).

Специальные латуни кроме цинка содержат и другие легирующие элементы. Их маркировка включает в себя дополнительные буквы и цифры, указывающие легирующие элементы и их содержание в %.

Содержание цинка определяется по остатку от 100%. Например ЛС59-1 содержит 59% меди, 1% свинца и 40% цинка.

Многокомпонентные латуни делятся на классы, которые называются по основному (кроме цинка) легирующему элементу.

В таблице представлены основные марки латуней. Они используются как для  литья (литейные), так и для производства проката (деформируемые).  Некоторые латуни используются для сварки и пайки (ГОСТ 16130-90).

Структура латуней.

В зависимости от химического состава  латуни могут быть однофазными, двухфазными и многофазными.

Большинство простых латуней и некоторые специальные латуни являются однофазными (α-латуни) и представляют собой  твердый раствор цинка в меди (α -фаза). Они обладают хорошей пластичностью во всем интервале температур, поэтому однофазные α-латуни, например Л68, хорошо обрабатываются давлением  при высоких  и  низких температурах.

Двухфазные латуни  содержат включения твердых и хрупких фаз, например β-фазу. (α+β)  латуни и другие двухфазные латуни ограниченно обрабатываются давлением (например, только при высоких температурах).

Свинцовые латуни имеют структуру (α +Pb) или (α+β+Pb). Практически не растворяясь  в латуни, свинец  присутствует в виде самостоятельной фазы, что обеспечивает отличную обрабатываемость резанием.

С увеличением содержания легирующих элементов могут возникать дополнительные твердые и хрупкие фазы. Поэтому   легирование дополнительной компонентой обычно не превышает 0.5 – 3 %.

Фазовый состав определяет принадлежность к классу литейных или деформируемых латуней, возможность выпуска различных полуфабрикатов  и их свойства.

Общие свойства латуней

Простые латуни.

Твердость, предел текучести, предел прочности и  пластичность простых латуней выше, чем у меди. В целом эти показатели растут с увеличением содержания цинка.

Наилучшей пластичностью обладает Л68 (наибольшая глубина вытяжки для листов, наибольшее число перегибов для проволоки).

В Л63 количество β-фазы незначительно и оно мало отражается на пластичности Л63 и её способности к обработке давлением при низких температурах, но требует строгого соблюдения режима охлаждения.

 Из простых латуней производится прокат всех видов. Все простые латуни имеют хорошие литейные свойства и могут использоваться для производства отливок. Антифрикционными свойствами простые латуни, также как и медь, не обладают.

Специальные латуни.

Специальные латуни обладают большей  прочностью, лучшей коррозионной стойкостью к большему числу сред по сравнению с простыми латунями. Большинство специальных латуней имеют хорошие антифрикционные свойства.

Многие  из них устойчивы к морской воде  (оловянные, алюминиевые, кремнистые. марганцевые), перегретому пару (марганцевые латуни) и т.д.

Некоторые из них сочетают отличные коррозионные свойства с хорошими антифрикционными свойствами (ЛК65-1.5-3, ЛО90-1, ЛЖМц59-1-1).

Особая стойкость отдельных латуней к конкретным средам в специфических условиях эксплуатации определяет сферу их преимущественного применения. Например, оловянные латуни называют «морскими латунями».

Самыми распространенными являются свинцовые латуни. Их главное свойство – отличная обрабатываемость резанием. Это  проявляется в  возможности скоростной обработки заготовок с малым износом инструмента.

При этом образуется мелкая сыпучая стружка, что определяет   чистоту обрабатываемой поверхности и минимальный наклеп при резании. Это определяет применение свинцовых латуней для изготовления мелкоразмерных деталей  для точной механики.

Их отрицательной стороной является низкая ударная вязкость, низкая прочность на изгиб при наличии надреза. Самой распространенной из свинцовых латуней является ЛС59-1.

Наилучшую обрабатываемость имеет латунь ЛС63-3. По отношению к ней оценивают обрабатываемость цветных металлов и углеродистых сталей (в процентах).

Практически все латуни являются хорошим конструкционным материалом при низких температурах. Также как и медь они сохраняют пластичность и не становятся хрупкими при охлаждении вплоть до гелиевых температур.

За счет более высоких температур рекристаллизации (300-370оС) ползучесть латуней при  высоких температурах меньше, чем у меди.

В зоне средних температур (200-600оС ) в латунях наблюдается явление хрупкости.

Оно связано с образованием хрупких межкристаллических прослоек из нерастворимых при низких температурах примесей (свинец, висмут). С повышением температуры ударная вязкость латуней уменьшается.

Электро- и теплопроводность латуней заметно ниже, чем у меди.

Источник:

Медь и сплавы на ее основе: латуни, бронзы. Их свойства, применение, классификация

kakaya_plotnost_u_splava_latuni_fizicheskie_svoystva_i_primenenie_latuni_1-5-9699184

Медь — это тяжелый розово-красный металл, мягкий и ковкий, плавится при температуре 1084,5°С, очень хорошо проводит электрический ток и теплоту: электрическая проводимость меди в 1,7 раза выше, чем алюминия, в 6 раз выше, чем железа, и лишь немного уступает электрической проводимости серебра. Получают ее из медных руд, таких как халькоперит (медный колчедан), борнит, халькозин (медный блеск), ковеллин, малахит и азурит. Дальнейшей электролитической обработкой черной меди получают чистую медь. Цвет меди — красноватый. Плотность — 8,9 г/см3, температура плавления — 1083°C.

Медь и сплавы на ее основе: латуни, бронзы.

К цветным металлам, наиболее широко применяемым в промышленности, относятся медь, алюминий, хром, олово, цинк, магний, вольфрам, молибден, никель, свинец, титан, серебро, золото, платина и др.

К сплавам цветных металлов относятся: медные сплавы (латунь, бронза и др.); алюминиевые сплавы (дюралюминий, силумин и др.); магниевые сплавы; титановые сплавы; свинцово-оловянистые сплавы и др.

Латунь — это сплав меди (45 — 80%) с цинком (от 3 до 50%), а также с другими элементами: алюминием, оловом, свинцом, железом, никелем и др. Плотность латуни 8,3 — 8,5 г/см3, температура плавления 890–1000°C.

В зависимости от технологических свойств латуни подразделяются на литейные и обрабатываемые давлением. Они обладают хорошей прочностью, пластичностью, антифрикционными и антикоррозионными свойствами.

Высокими механическими, антикоррозионными и литейными свойствами обладает томпак — латунь, содержащая не более 22% цинка и не менее 61% меди.

Латунь обозначается буквой Л.

В маркировке латуни буквы обозначают химические элементы, входящие в сплав, первые две цифры, стоящие за буквами, указывают содержание меди, а цифры, отделенные дефисом, — среднее содержание легирующих элементов в процентах в порядке, соответствующем буквам. Так, латунь марки ЛКС80-3-3 содержит 79 — 81% меди, 10,5 — 16,5% цинка, 2,5 — 4,5% кремния, 2 — 4% свинца.

Латунь широко применяется в промышленности.

Также может быть интересно:  Нарезка резьба: таблица наиболее часто используемых метчиков, разновидности и конструкция

Бронза — это сплав меди с одним или несколькими химическими элементами: оловом, свинцом, цинком, никелем, фосфором, кремнием, марганцем, алюминием, железом.

Плотность бронзы 7,5 — 9,3 г/см³, температура плавления 940 — 1093 °C.

Используется в качестве материала для деталей машин, арматуры, подвергающихся трению, атмосферному воздействию, а также действию слабых кислот и т. д.

Бронзы характеризуются высокими механическими, литейными, антифрикционными и антикоррозионными свойствами.

В зависимости от состава различают бронзы:

— оловянистые, применяемые для вкладышей подшипников и арматуры;

— алюминиевые (6 — 11,5% алюминия), применяемые для фасонного литья и лент;

— кремнистые (1 — 3,5% кремния);

— марганцовистые (4,5 — 5,5 % марганца);

— свинцовые (30 — 60 % свинца), применяемые для подшипников скольжения;

— бериллиевые (2% бериллия), применяемые для пружин и износостойких деталей;

— медно-титановые и др.

Бронзы хорошо обрабатываются и отливаются.

Бронзы обозначаются буквами Бр и другими буквами (аналогично латуни), указывающими элементы, входящие в их состав, и цифрами, показывающими соответственно среднее содержание этих элементов в процентах. Так, бронза марки БрАЖМц 10-3-1,5 содержит 9,5 — 10,5% алюминия, 2,5 — 3,5 % железа, 1 — 2 % марганца, остальное — медь.

В группу благородных металлов входят золото, платина, серебро.

При нормальной комнатной температуре в жидком состоянии находится ртуть. Плотность ртути — 13,5 г/см3, температура кипения — 357°C, затвердевания – 38,9°C.

Свойства меди.

Медь хорошо поддается холодной пластической обработке, штамповке, горячей ковке. Во время холодной пластической обработки несколько повышает свою твердость. Отличается хорошей тепло- и электропроводностью.

Под влиянием влаги быстро окисляется, покрываясь зеленым налетом. Широко используется в электротехнической промышленности, для изготовления художественных изделий, в гальванопластике и для металлопокрытий. Медь входит также в состав многих сплавов.

Медь можно паять, сваривать с предварительным подогревом, под давлением.

Цветные металлы и их сплавы характеризуются высокой сопротивляемостью коррозии, большой пластичностью, вязкостью, хорошей обрабатываемостью, высокой электро- и теплопроводностью.

Классификация меди.

Чистая медь (Сu) это популярный представитель группы цветных металлов, который обладает внушительным набором полезных физико-технических характеристик. Главные свойства этого металла — высокая электрическая и тепловая проводимость, дополняемая хорошей сопротивляемостью окислению.

Существует несколько видов заготовок из чистой меди, в которых основной металл представлен от 99,4% до 99,9% от общего объёма с остаточными примесями и легирующими компонентами — фосфором, цинком, никелем, оловом, свинцом, бериллием, кремнием.

Кроме сочетания легирующих элементов, чистая медь различается по давлению, необходимому для деформации структуры. Металл, твердость которого примерно равна 45 МПа называется мягкой медью, а если этот параметр равен 110 МПа, такую медь называют твёрдой.

Более точная классификация по пределу прочности заключается в наличии трёх видов меди с соответствующим отражением в маркировке — мягкая медь (м), полутвёрдая (пт) и твёрдая (т).

Для повышения физико-технических характеристик чистой меди в современной металлургии создаются передовые медные сплавы, легируемые различными металлами и минералами.

Основные элементы, которые включены в состав медных сплавов этих двух типов — это цинк, олово, алюминий, кремний, фосфор, никель.

В качестве дополнительных легирующих компонентов для создания новых физических и химических характеристик используются марганец, висмут, никель, бериллий и другие элементы таблицы Менделеева.

Все медные сплавы подразделяются на три большие группы — латунь, оловянистые и неоловянистые бронзы. Информация о бронзах и латунях представлена в отдельных статьях текущего раздела.

По аналогии с алюминиевыми сплавами, металлы на основе меди также делятся на деформируемые и литейные сплавы. Деформируемые медные сплавы отличаются высокой пластичностью и электропроводностью.

Эти металлы широко используются для создания различных конструкций, штампованных деталей, пружин, гильз, электротехнических и электронных изделий, а также декоративно-функциональных предметов интерьера. Из них производятся многие виды проката: медный лист и трубы, сорт и арматура.

Литейные медные сплавы характеризуются отличной плавкостью и являются основным материалом для художественного и промышленного фасованного литья.

Медно-фосфористые сплавы представляют собой металлы, в состав которых входит два основных элемента — медь и фосфор. Кроме того, в составе таких сплавов находятся в незначительных пропорциях висмут и сурьма.

Медно-фосфористые сплавы используются в машиностроении, для создания новых сплавов, в качестве раскислителей и в производстве бытовой техники.

В частности материалы этого класса, дополненные серебром, являются самофлюсующимися припоями для эффективной пайки меди и других цветных металлов.

Большим спросом в промышленном производстве пользуются жаропрочные сплавы меди, включающие кремний, хром и цинк в различных пропорциях.

Эти прогрессивные материалы способны выдерживать значительные термальные нагрузки без изменения основных физико-химических характеристик.

Подобное свойство обусловило широкое применение медных сплавов для изготовления деталей, работающих в условиях повышенного термального прессинга.

Жаропрочные сплавы включают в свой состав от одного до нескольких легирующих элементов. Для упрочнения термической стойкости в такие сплавы вводят хром, марганец, кремний, никель и цинк в различных пропорциях и сочетаниях.

Предварительная стадия процесса производства на основе медных сплавов этой категории в обязательном порядке включает в себя термообработку заготовок для облегчения механических воздействий. Электротехнические медные сплавы — это подгруппа жаропрочных соединений, которая используется для производства электронных деталей, электрооборудования и приборов.

Металлы этого класса, кроме термостойкости, отличаются повышенной электропроводностью, что и определяет область применения. В основном они представлены медным кругом различного диаметра.

В отдельную группу также выделены медно никелевые сплавы, отличающиеся непревзойдённой коррозийной стойкостью, что позволяет с успехом использовать этот передовой материал в современном судостроении. К этой же группе относится мельхиор, который широко используется для изготовления посуды и украшений.

Наличие в сплаве никеля существенно увеличивает сопротивление окислению, повышает упругость и прочность конечного соединения. Одновременно понижаются главные свойства меди — теплопроводность и электропроводимость, что учитывается при использовании медно-никелевых сплавов.

Как правило, обработка медно-никелевых сплавов требует повышенных температурных режимов и высокого давления.

Большинство медных сплавов обладают серьёзным конкурентным приоритетом, ставящим эти металлы в группу незаменимых материалов в определённой области производства.

Минимальный коэффициент трения — это главное преимущество различных сплавов этой категории, который активно используется в изготовлении деталей для механических узлов, работающих в режиме постоянного рабочего контакта с различными твёрдыми поверхностями.

Применение меди.

Одна из важнейших отраслей применения меди — электротехническая промышленность. Из меди изготавливают электрические провода. Для этой цели металл должен быть очень чистый: примеси резко снижают электрическую проводимость. Присутствие в меди 0,02% алюминия снизит ее электрическую проводимость почти на 10%.

Еще более резко возрастает сопротивление металла в присутствии неметаллических примесей. Для получения чистой меди, которую можно использовать в электротехнике, проводят ее электрорафинирование.

Этот метод основан на проведении электролиза водного раствора соли меди с растворимым медным анодную или черновую, медь, которая служит одним из электродов, погружают ванну, заполненную водным раствором сульфата меди. В ванну погружают еще один электрод.

К электродам подключают источник постоянного тока таким образом, чтобы техническая медь стала анодом (положительный полюс источника тока), электрод — катодом. На аноде идет реакция окисления металла: анод (+) Сu (техн.)-2e=Сu2+ + примеси.

Ионы меди переходят в раствор и перемещаются к катоду (отрицательно заряженному электроду). Нерастворимые примеси собираются вблизи анода, некоторые примеси могут переходить в раствор. На катоде протекает процесс восстановления ионов меди: катод (-) Сu2 + + 2е=Сu. Условия электролиза таковы, что примеси, находящиеся в растворе, не восстанавливаются.

Электрорафинированием получают Н электролитическую медь чистотой 99,999%, что вполне достаточно для нужд электротехники. Очень важная область применения меди — производство медных сплавов.

Со многими металлами медь образует так называемые твердые растворы, которые похожи на обычные растворы тем, что в них атомы одного компонента (металла) равномерно распределены среди атомов другого. Большинство сплавов меди — это твердые растворы.

Сплав меди, известный с древнейших времен — бронза содержит 4 — 30% олова (обычно 8 — 10%). Бронза по своей твердости превосходит отдельно взятые чистые медь и олово.

В настоящее время в бронзах олово часто заменяют другими металлами, что приводит к изменению их свойств. Алюминиевые бронзы, которые содержат 5 — 10% алюминия, обладают повышенной прочностью.

Из такой бронзы чеканят медные монеты.

Очень прочные, твердые и упругие бериллиевые бронзы содержат примерно 2% бериллия. Пружины, изготовленные из бериллиевой бронзы, практически вечные. Широкое применение в народном хозяйстве нашли бронзы, изготовленные на основе других металлов: свинца, марганца, сурьмы, железа, никеля и кремния.

Большую группу составляют медно-никелевые сплавы. Эти сплавы имеют серебристо-белый цвет, несмотря на то, что преобладающим компонентом является медь. Сплав мельхиор содержит от 18 до 33% никеля (остальное медь). Он имеет красивый внешний вид.

Из мельхиора изготавливают посуду и украшения, чеканят монеты («серебро»). Похожий на мельхиор сплав — нейзильбер содержит кроме 15% никеля, до 20% цинка. Этот сплав используют для изготовления художественных изделий, медицинского инструмента.

Медно-никелевые сплавы константан (40% никеля) и манганин (сплав меди, никеля и марганца) обладают очень высоким электрическим сопротивлением. Их используют в производстве элект­роизмерительных приборов. Характерная особенность всех медно-никелевых сплавов — их высокая стойкость к процессам коррозии — они почти не подвергаются разрушению даже в морской воде.

Сплавы меди с цинком с содержанием цинка до 50% носят название латунь. Это дешевые сплавы, обладают хорошими механическими свойствами, легко обрабатываются.

Латуни благодаря своим качествам нашли широкое применение в машиностроении, химической промышленности, в производстве бытовых товаров.

Для придания латуням особых свойств в них часто добавляют алюминий, никель, кремний, марганец и другие металлы.

Из латуней изготавливают трубы для радиаторов автомашин, трубопроводы, патронные гильзы, памятные медали, а также части технологических аппаратов для получения различных веществ.

В технике применяют процессы меднения — покрытие стальных изделий тонким слоем меди. Зачем это делается? Стальные детали и изделия часто покрывают защитно-декоративными хромовыми и никелевыми покрытиями.

Такое покрытие, нанесенное непосредственно на сталь, непрочно: оно растрескивается и отпадает.

Если сталь покрыть тонким слоем меди, а затем хромом или никелем, то электролитические осадки получаются высокого качества. Меднение проводят также для облегчения спаивания деталей — медь очень хорошо подвергается пайке.

Источник:

Оцените статью
Станки и устройства